The whole numbers, the first numbers we learn, are infinite. If you take a number and add one to it, you get a new and bigger number — but not always. Keep counting up from one and you can get to 213 — but start at one o’clock in the afternoon and you never get to two-hundred and thirteen o’clock. In this post we are going to look at a type of number where we cannot keep going forever. Instead, as we keep adding one, the numbers cycle around, like the numbers on a clock. It turns out that there is an infinite family of these number systems, and some of them obey almost all the normal rules of arithmetic.

When you are first learning to add and multiply, you might make tables. Memorizing the multiplication tables is somewhat controversial in math education (Occupy Math comes down firmly in favor of memorizing your one-digit multiplication facts). At the top of the post are addition and multiplication tables, but not the normal ones. This post is about a whole collection of number systems based on the integers, each of which has only a finite number of numbers. The addition and multiplication tables above have five numbers, for example. As we will see, these number systems show up in several applications. They obey many of the same laws of arithmetic as the integers. Mathematicians think of these number systems as smaller images of the integers that preserve some of their properties.
Continue reading